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Abstract 

A g-c-derivation is a linear mapping D from a normed algebra A  into itself such 

that ( ) ( ) ( ) ( ) ( ) ( ) ( )bDagbaDbaDbgaDabD +=+=  for all ,, A∈ba  where g is 

continuous linear map from A  into itself. In this paper, we prove that any 
derivation--cg  on a semiprime Banach nonassociative algebra A  is continuous 

if for each closed infinite dimensional ideal ,A⊆I  there is a sequence 

{ } ( )AMT nn ⊆∈N  (the multiplication algebra of A ), such that the sequence 

{( ) } N∈
−

nnITTT "21  of closed right ideals of A  is constantly decreasing. As a 

consequence, every derivation--cg  on nonassociative algebra-∗H  with zero 

annihilator is continuous. 
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1. Introduction 

Jewell and Sinclair in [5] obtained the continuity of derivations on 
certain Banach algebras known as Jewell-Sinclair theorem. In 1994, 
Palmer in [8] presented Jewell-Sinclair theorem in a perfect form as 
follows: Every derivation on a Banach algebra A  is continuous if A  
satisfies:  

(i) A  has no nonzero finite dimensional nilpotent ideals. 

(ii) For each closed infinite dimensional ideal I of A , there is a 

sequence { } A⊆∈Nnna  such that the sequence {( ) } N∈
−

nnIaaa "21  of closed 

right ideals of A  is constantly decreasing. 

In [6], they generalized the above Palmer presentation of Jewell-
Sinclair theorem in the nonassociative setting as follows: Let A  be a 
semiprime Banach algebra not necessarily associative, such that for each 
closed infinite dimensional ideal ,A⊆I  there is a sequence 
{ } ( )AMT nn ⊆∈N  (the multiplication algebra of A ), such that the 

sequence {( ) } N∈
−

nnITTT "21  of closed right ideals of A  is constantly 

decreasing, then any derivation on A  is continuous. Also, they used this 
result and Villena’s lines proof in [11, Theorem 4] to prove that every 

derivation on nonassociative algebra-∗H  with zero annihilator is 
continuous. 

In this paper, we will prove that every derivation--cg  on 

nonassociative algebra-∗H  with zero annihilator is continuous via 
nonassociative Jewell-Sinclair theorem. So our purpose is the following 
theorems:  

Theorem A. Let A  be a semiprime complete normed algebra such 
that for each closed infinite dimensional ideal ,A⊆I  there is a sequence 

{ } ( )AMT nn ⊆∈N  such that the sequence {( ) } N∈
−

nnITTT "21  of closed 

right ideals of A  is constantly decreasing. Then any derivationcg --  on A  

is continuous. 
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Theorem B. Every derivationcg --  on nonassociative gebralaH -∗  A  

with zero annihilator is continuous. 

Following [7], we define a derivation--cg  as follows : Let A  be a 

normed algebra, a linear mapping D from A  into itself is called 
,derivation--cg  if ( ) ( ) ( ) ( ) ( ) ( ) ( )bDagbaDbaDbgaDabD +=+=  for all 

,, A∈ba  where g is continuous linear map from A  into itself, note that 

if g is the identity map, then D is the usual derivation. Recall from [10] 
that, if X and Y are normed spaces and if YXT →:  is linear map, then 
separating subspace ( )TS  of T is define as follows: ( ) { ∃∈= :YyTS  a 

sequence { }nx  in N∈nX ,  with 0lim =nx  and ( ) }.lim yxT n =  The 

separating space ( )TS  is a closed linear subspace of Y. Also, recall from 

[1] that an annihilator of an algebra A  (denoted by ( )AAnn ) is defined 

as the set of those a in A  satisfying 0== baab  for every .A∈b  An 

algebra A  is semiprime if for any ideal I of A  such that ,02 =I  then 

0=I  and A  is prime, if for any two ideals I and J of A  such that 
,0. =JI  then either 0=I  or .0=J  Also, if A  has nonzero product 

and has no nonzero proper closed ideals, then A  is topologically simple. 
The multiplication algebra of A  denoted by ( )AM  is defined as a 

subalgebra of ( )AL  (the algebra of all linear mapping on A ) generated 

by ,, aa RL  and ,AId  which is left, right, and identity multiplication 

operators, respectively. An involution of an algebra A  is a mapping 
∗→ xx  of A  into A  such that for all C∈α∈ ,, Ayx  (complex field) 

the ∗mapping  satisfies the following conditions: 

(i) ( ) ;∗∗∗ +=+ yxyx  (ii) ( ) ;∗∗∗ α=α xx  (iii) ( ) ;xx =∗∗  (iv) ( ) .∗∗∗ = xyxy  

A nonassociative ebralgaH -∗  is an algebra A  with algebra 

,involution∗  whose underlying vector space is a Hilbert space satisfying 

.,,, cabcbacab ∗∗ ==   
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Finally, we recall that a prime algebra A  over a field C  is said to be 
centrally closed, if for every nonzero ideal I of A  and for every linear 
mapping A→If :  with ( ) ( )xafaxf =  and ( ) ( ) ,axfxaf =  for all A∈a  

and ,Ix ∈  then there exists C∈λ  such that ( ) xxf λ=  for all Ix ∈  

(see [4]). From now on, in this paper, all algebra are not necessarily 
associative over a complex field.  

2. Proof of Theorem A 

For a Banach space X, we denote by ( )XBL  (the Banach space of all 

bounded linear mapping on X ). We begin this section by the following 
results:  

Lemma 2.1 ([8, Lemma 6.1.17]). Let X and Y be Banach spaces.      
Let { } ( )XBLS nn ⊆∈N  and { } ( )YBLR nn ⊆∈N  and ( )YXLT ,∈  satisfy 

( )YXBLTRTS nn ,∈−  for all .N∈n  Then, there is an integer k such 

that ( ( )) ( ( ))−− = TRRRTRRR kn SS "" 2121  for all .kn ≥  

Lemma 2.2. If A  is a normed algebra and if D is derivationcg --  on .A  

Then ( )DS  is closed ideal of A . 

Proof. It is clear that ( )DS  is a closed subspace of A . Let ( ),Db S∈  

there exists a sequence { }na  in A  such that 0lim =na  and 

( ) =naDlim  .b  For all ,A∈a  we have .0lim =aan  Since g is continuous, 

it follows that ( ) .0lim =nag  Now ( ) ( ) += aaDaaD nn limlim   

( ) ( ) .lim baaDag n =  Therefore ( ).Dba S∈  Similarly, ( ).Dab S∈  This 

complete the proof.  

Lemma 2.3. If A  is a normed algebra and if D is derivationcg --  on A , 

then ( ),ABLTDDT ∈−  for all ( ).AMT ∈  



ON THE NONASSOCIATIVE JEWELL-SINCLAIR … 141

Proof. Let { ( ) ( )}.: AAF BLTDDTBLT ∈−∈=  It is clear that  

F  is subspace of ( ).ABL  For ,, 21 F∈TT  we have =− DTTTDT 2121  
( ) ( ).221211 DTDTTTDTDT −+−  Therefore ( ),2121 ABLDTTTDT ∈−  

that is, .21 F∈TT  As a consequence, F  is a subalgebra of ( ).ABL  Since 

,, aa RL  and AId  are in ,F  it follows that ( ).AF M=   

The proof of the following theorem is similar to that given in              
[6, Theorem 2-1]. 

Theorem A. Let A  be a semiprime complete normed algebra such 
that for each closed infinite dimensional ideal ,A⊆I  there is a sequence 

{ } ( )AMT nn ⊆∈N  such that the sequence {( ) } N∈
−

nnITTT "21  of closed 

right ideals of A  is constantly decreasing. Then any derivationcg --  on A  

is continuous. 

Proof. Let D be a derivation--cg  on A . By Lemma 2.2, ( )DS             

is closed ideal of A . If ( )DS  is infinite dimensional, then by    

assumption, there is a sequence { } ( )AMT nn ⊆∈N  such that the         

sequence {( ( )) } N∈
−

nn DTTT S"21  is constantly decreasing. Applying 

Lemmas 2.1 and 2.3 by setting: nnn STRDTYX ===== ,,A        
we get, there exist a natural number N∈k  such that 

( ( )) ( ( ))−− = DTTTDTTT kn SS "" 2121  for all .kn ≥  This condition 

implies that { } N∈nnT  not constantly decreasing, a contradiction. So, 

( )DS  must be finite dimensional. Note that, if ( )DS  is finite 

dimensional, then ( )DD S  is continuous. Now we claim that ( ) { }.02 =DS  

Let ( ),, Dba S∈  then there exists a sequence { }na  in A  such that 

0lim =na  and ( ) .lim aaD n =  Now since ,0lim =na  then 0lim =ban  

and since g is continuous, then ( ) .0lim =nag  Since ( )DS    is an ideal of 
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A  and ( ),Db S∈  then ∈ban  ( )DS  but ( )DD S  is continuous, then 

( ) .0lim =baD n  Since ( ) ( ) ( ) ( ),bDagbaDbaD nnn +=  then ( ) ,lim abbaD n =  

this implies that .0=ab  Therefore ( ) { }02 =DS  and since A  is 

semiprime, we have ( ) 0=DS  and by closed-graph theorem, we obtain 

that D is continuous. As required.   

3. Proof of Theorem B 

In this section, we need the following lemmas before we give our 
proof of Theorem B: 

Lemma 3.1 ([11]). Let A  be a centrally closed prime algebra such 
that ( )( ) 1dim >AT  for all nonzero T in the multiplication algebra ( )AM  

of A . Then, there is a sequence { } N∈nnb  in A  and { } N∈nnT  in ( )AM  

such that 011 ≠− nnn bTTT "  and 011 =+ nn bTT "  for all .N∈n   

Lemma 3.2 ([3]). Every gebraalH -∗  with zero annihilator is the 

closure of the orthogonal sum of its minimal closed ideals, and these are 

topologically simple .- gebraalH ∗  

Lemma 3.3 ([2]). Every topologically simple gebraalH -∗  is centrally 

closed prime algebra. 

Lemma 3.4 ([9]). Let A  be an algebra, and assume the existence of a 
non-degenerate symmetric associative bilinear form >< .,.  on A . Then 

we have 

(i) there exist a unique linear algebra involution # on the 

multiplication algebra ( )AM  of A  satisfying dd RL =#  and dd LR =#  for 

all ;A∈d   

(ii) for all A∈yx,  and ( ).AMT ∈  The equality yTxyTx #,, =  

holds.  
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Lemma 3.5. Let D be a derivationcg --  on topologically simple 

complete normed algebra A  and suppose that there exists a nonzero 
( )AMT ∈  with finite dimensional range satisfying .TDDT =  Then D is 

continuous.  

Proof. Let ( ),Dx S∈  then there exists a sequence { }na  in A  such 

that 0lim =na  and .lim xDan =  Now, since TD is continuous            

and ,0lim =na  then ( ) ,0lim =naTD  hence ( ) .0=xT  Therefore, 

( )( ) { }.0=DT S  But ( )DS  is closed ideal of A , then ( )( ) { }.0=DT S  Since 

A  topologically simple, we have ( ) { }.0=AT  This is a contradiction 

because T is nonzero. Then ( ) { }.0=DS  Thus D is continuous by the 

closed-graph theorem.   

A well-known result is due to Villena [11, Theorem 4], which states 

that: If A  is algebra-∗H  with zero annihilator, then any derivation on 

A  is continuous. We present this result in a more general setting and we 
will use the nonassociative Jewell-Sinclair theorem in our proof, as we 
will see that in the following theorem:  

Theorem B. Every derivationcg --  on gebraalH -∗  A  with zero 

annihilator is continuous. 

Proof. Let D be a derivation--cg  on algebra-∗H  A  with zero 

annihilator. At first, we assume that A  is topologically simple. Applying 
Lemma 3.3, we have A  is a centrally closed prime algebra. Now, ( )AM  

satisfying one of the following cases:  

(i) There exist an element T in ( )AM  such that T has finite 

dimensional range and .TDDT =  

(ii) Every element in ( )AM  has infinite dimensional range or 

TDDT ≠  for all T in ( ).AM   
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First case. If (i) is true, then by using Lemma 3.5, D is continuous.  

Second case. If (ii) is true, since every element in ( )AM  has infinite 

dimensional range, it follows that from Lemma 3.1, there exists a 
sequence { } A⊆∈NnnC  and { } ( )AMT nn ⊆∈N  such that for all ,N∈n  

,011 =+ nnn CTTT "  

.011 ≠− nnn CTTT "  

Taking into account that every topologically simple algebra-∗H  contains 

a non-degenerate symmetric associative bilinear continuous form 
>< .,.  with an algebra involution # on ( )AM  satisfying: 

bbbb LRRL == ## ,  for all .A∈b  Now, if we suppose that N∈n  is a 

positive integer number satisfying: 

( ) ( ),#
1

#
1

##
1 AA += nn TTTT ""  then we have a contradiction. Indeed,  

( ) (( ) ) ( ) ( ) ( ) nnnnnn CTTCTTCTT ,,,0 #
11

##
1111 AAA """ +++ ===  

 ( ) ( ) ( ) nnnnnn CTTCTTCTT ,,, ##
1

#
1

#
1

#
1

#
1 AAA """ === ++  

 ( ) (( ) ) ( ) ( ) .,,, 1
##

1
##

1 nnnnnn CTTCTTCTT """ AAA ===  

Therefore, for every ,N∈n  there exists a sequence ( ){ } N∈nnTT A##
1 "  

of closed right ideals of A  constantly decreasing. Since A  is semiprime, 
applying (Theorem A) we get D is continuous. In order to obtain the general 
case of the proof, assume that A  has zero annihilator. Now, let M be a 

minimal closed ideal of A . If the inclusion ( ) MMD ⊆  is not true, then 

there exists a nonzero minimal closed J of A  such that ( ) ,JMD ⊆  and 

{ }.0=MJ ∩  This is a contradiction because A  is semiprime. Then the 

inclusion must be ( ) ,MMD ⊆  or ( ) .MMJMD ⊆⊆ ∩  Since M is 
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topologically simple by Lemma 3.2, it follows from the first part of the 
proof that D is continuous on M. Let ( ),Da S∈  then there exists a 

sequence { }na  in A  such that 0lim =na  and .lim aDan =  Now, for all 

,My ∈  we have ,0lim =nya  since M is an ideal, then .Myan ∈  Since 

D is continuous on M, it follows that ( ) .0lim =nyaD  Now, ( ) =nyaD  

( ) ( ) ( ),nn ayDagyD +  then ( ) .lim yayaD n =  Therefore .0=ya  Similarly, 

.0=ay  For all ( )Da S∈  and ,My ∈  then ( ) ( ) ,0 MDDM SS ==  for 

each minimal closed ideal M of A . Therefore ( ) ( ) ,0 ASAS DD ==  which 

implies that ( ) ( ) { }.0Ann =⊆ AS D  Thus D is continuous by the closed-

graph theorem.  
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